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Abstract—Fluid antenna systems (FASs) can reconfigure their
antenna locations freely within a spatially continuous space.
To keep favorable antenna positions, the channel state informa-
tion (CSI) acquisition for FASs is essential. While some techniques
have been proposed, most existing FAS channel estimators
require several channel assumptions, such as slow variation
and angular-domain sparsity. When these assumptions are not
reasonable, the model mismatch may lead to unpredictable
performance losses. In this paper, we propose the successive
Bayesian reconstructor (S-BAR) as a general solution to estimate
FAS channels. Unlike model-based estimators, the proposed
S-BAR is prior-aided, which builds the experiential kernel for
CSI acquisition. Inspired by Bayesian regression, the key idea
of S-BAR is to model the FAS channels as a stochastic process,
whose uncertainty can be successively eliminated by kernel-based
sampling and regression. In this way, the predictive mean of
the regressed stochastic process can be viewed as a Bayesian
channel estimator. Simulation results verify that, in both model-
mismatched and model-matched cases, the proposed S-BAR can
achieve higher estimation accuracy than the existing schemes.

Index Terms— Fluid antenna system (FAS), movable antenna
(MA), dense array system (DAS), compressed sensing, channel
estimation, Gaussian process regression.

I. INTRODUCTION

IFFERENT from the conventional multiple-input

multiple-output (MIMO) system where all antennas are
fabricated and fixed on an array [2], [3], [4], fluid antenna
systems (FASs) [5], [6], [7], also called movable antenna
(MA) systems [8], [9], [10], introduce a movable structure
where a few fluid antennas can switch their locations freely
within a given space. In contrast to the MIMO whose antenna
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spacing is usually subwavelength order of magnitude, the
spacing of the available locations (referred to as “ports”)
for fluid antennas can approach infinitesimal [9]. This
almost continuously movable feature allows FASs to keep
antennas always at favorable positions, which can fully
explore the diversity and multiplexing gains of a given
space [11]. Compared to the fixed antenna systems, FASs
can maintain high transmission reliability [6] and large-scale
multiple-access [7] while using much fewer antennas and
radio frequency (RF) components [12]. As a result, FAS
has become a promising solution to effectively reduce the
hardware cost and complexity of transceivers [13].

A. Prior Work

The original idea of reconfiguring antenna positions dated
back to 2000s, when reconfigurable antennas were proposed
to balance the hardware complexity and transmission perfor-
mance of MIMO systems [14], [15], [16]. By connecting
massive antennas with a few RF chains through a switch
network, reconfigurable antennas can carefully select a sub-
set of antennas associated with the well-performed channels
for transmission [17], [18]. Thanks to the advances in the
microwave field, more position-flexible fluid antennas were
proposed [19], [20]. Due to their compact hardware structures
based on cheap materials, the cost and complexity of fluid
antennas are low. For example, in [21], RF micro-electro-
mechanical systems (MEMSs) were integrated into some radi-
ation patches to reconfigure their positions. In [22], a fluid
antenna made of liquid metals could move continuously in a
non-conductive tube. In [23], pixel-like switches were utilized
to design an electronically reconfigurable surface. By properly
configuring multiple analog switches that link massive patches,
the positions of radiation points can be reconfigured in several
microseconds. As a result, these highly flexible structures are
promising to explore the diversity and multiplexing gains of a
limited space [5], [6], [7], [8], [9], [10], [11].

Up to now, the existing works on FASs have covered a
wide range, mainly focusing on the performance analysis [5],
[6], [7], [24], [25], [26], port selection [27], [28], [29],
beamforming design [8], [9], [10], [30], [31], [32], and channel
estimation [33], [34], [35]. For example, the ergodic capacity
and the lower-bound capacity of FASs were derived in [5].
Then, the multiplexing gains of multi-user FASs were analyzed
in [7] and [36]. By combining machine learning methods
and analytical approximations, the port selection for FASs
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was studied in [27], [28], and [29] to realize fast antenna
placements. To maximize the sum-rate in FASs, alternaing
optimization (AO)-based algorithms that jointly optimize the
antenna positions and beamformers were proposed in [10]
and [30]. To reduce the power consumption of FASs, sequen-
tial convex approximation (SCA)-based algorithms for FAS
beamforming were proposed in [9] and [31].

Despite the encouraging prospects of FASs, such as high
capacity and low power consumption [6], [7], [8], these
expected gains are hard to achieve in practice. The transmis-
sion performance of FASs heavily relies on the positions of
fluid antennas [27], [28], [29]. To ensure favorable antenna
placements, the channel state information (CSI) of available
locations is essential, and most existing works have assumed
the perfectly known CSI [8], [9], [10], [30], [31], [32].
However, the channel estimation for FASs is challenging.
Particularly, to fully obtain the performance gains provided
by antenna mobility, the fluid antennas should move almost
continuously in a given space [6]. Different from conventional
MIMO which has large antenna spacing, the available loca-
tions (i.e., the ports) of fluid antennas are quite dense, leading
to very high-dimensional port channels. Within a coherence
time, it requires a large number of pilots for CSI acquisition in
FASs. Besides, limited by the hardware structure of FASs, only
a few ports can be connected to RF chains for pilot reception
within the coherence time, which exacerbates the difficulty of
channel estimation [33], [34], [35]. As a result, FASs can not
acquire the precise CSI in real-time, which finally bottlenecks
their performances in practice.

To tackle the above issue, some pilot-reduced FAS channel
estimators have been proposed [33], [34], [35]. For example,
in [33], a sequential linear minimum mean square error
(SeLMMSE) method was proposed. In each subframe, the
fluid antennas move to some equally-spaced ports for channel
measurements [33]. By assuming the channels are slow-
varying in a short distance, the channels of those unmeasured
ports are assumed to be equal to those of their nearby measured
ports. In [34], by assuming the angular-domain sparsity of
FAS channels, a compressed sensing (CS)-based estimator was
proposed. Employing orthogonal matching pursuit (OMP), this
estimator can estimate the channel parameters including the
angles of departure (AoDs), angles of arrival (AoAs), and
gains of multiple paths. In [35], by assuming the perfectly
known AoAs of all channel paths, the gains of FAS chan-
nels can be estimated by a least-square (LS)-based method.
Although these methods can achieve channel estimation for
FASs, they heavily rely on some channel assumptions, such as
the spatially slow variation [33], angular-domain sparsity [34],
and known AoAs [35]. When these assumptions are not
reasonable, the model mismatch may lead to unpredictable
performance losses.

B. Our Contributions

In this paper, we propose a successive Bayesian reconstruc-
tor (S-BAR) as a general solution to FAS channel estimation.'
Our contributions are summarized as follows.

Simulation codes are provided to reproduce the results in this article:
http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html
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« Bayesian regression in FASs: To the best of our knowl-
edge, the idea of Bayesian regression [37] is introduced
into FAS channel estimation for the first time. Firstly,
fluid antennas can switch their locations among ports
to measure channels, resembling a sampling process.
Secondly, since the ports are densely deployed, the FAS
channels have strong correlation. These two properties
motivate us to build a kernel that characterizes the chan-
nel correlations and then construct channels by kernel-
based sampling and regression. By carefully selecting
kernels and ports for channel measurements, the idea
of Bayesian regression is suitable to reconstruct FAS
channels in a non-parametric manner.

o General FAS channel estimator: The S-BAR is pro-
posed as a general solution to estimate FAS channels
without assuming channel models. The key idea is to
model the FAS channels as a stochastic process, whose
uncertainty can be successively eliminated by kernel-
based sampling and regression. The proposed S-BAR
is realized in two stages. In the first stage, following
the greedy-sampling idea of Bayesian regression, the
switch matrix for FASs is designed by maximizing the
mutual-information increment (MII) between two adja-
cent sampling points. In the second stage, according to
the designed switch matrix, the channel observations of
the select ports are combined with the kernels for process
regression,. Finally, the regressed stochastic process can
be viewed as the Bayesian estimator of FAS channels.

o Performance analysis and simulations: The minimum
mean square error (MSE) achieved by the proposed
S-BAR is derived, which only depends on the eigenvalues
of channel covariance and noise power. Then, numerical
simulations are provided to compare the performances of
different estimators. Our results show that, in both model-
mismatched and model-matched cases, the proposed
S-BAR outperforms the benchmark schemes with channel
assumptions, and the estimation accuracy of S-BAR can
increase by an order of magnitude. In addition, thanks
to the hybrid offline and online implementation of S-
BAR, the computational complexity of online employing
S-BAR is only linear with the number of ports.

C. Organization and Notation

Organization: The rest of this paper is organized as follows.
In Section II, the system model of an FAS is introduced, and
the existing solutions of FAS channel estimation are reviewed.
In Section III, the principle and the implementation of the
proposed S-BAR are illustrated. In Section IV, the perfor-
mance of S-BAR is analyzed, and the kernel selection for
S-BAR is discussed. In Section V, simulations are carried out
to compare the estimation performances of different schemes.
Finally, in Section VI, conclusions are drawn and future works
are discussed.

Notation: [-]=%, [T, []*, []*, and []" denote the inverse,
pseudo-inverse, conjugate, transpose, and conjugate-transpose
operations, respectively; || - || denotes the ls-norm of the argu-

ment; x(¢) denotes the i-th entry of vector x; X (¢, 5), X(4,:)
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Fig. 1. An illustration of channel estimation for an FAS, where one N-port
base station (BS) equipped with M fluid antennas receives pilots from a user
in the uplink.

and X(:, 7) denote the (7, j)-th entry, the j-th row, and the j-
th column of matrix X, respectively; [K] denotes the integer
set {1,---, K}; Tr(-) denotes the trace of its argument; P(-|-)
is the conditional probability density function; Ey (-) is the
expectation operator with respect to (w.r.t) the random vector
x; R{-} denotes the real part of the argument; In(-) denotes the
natural logarithm of its argument; CA (p, 3) and GP(u, X)
respectively denote the complex Gaussian distribution and
complex Gaussian process with mean p and covariance 3i;
U (a,b) denotes the uniform distribution between a and b; I,
is an L x L identity matrix; ey, is a zero-one vector with its
L-th element being one and the other elements being zero;
and Oy, is a zero vector or matrix with dimension L.

II. SYSTEM MODEL AND EXISTING METHODS

In this section, the system model is introduced in
Subsection II-A. In Subsection II-B, we review two typical
channel estimators for FASs, including the CS-based channel
estimator and the AO-based estimator. Finally, in Subsec-
tion II-C, the challenges and the opportunities of FAS channel
estimation are discussed.

A. System Model

This paper considers the narrowband channel estimation of
an uplink FAS, which consists of an N-port BS equipped
with M fluid antennas (M < N) and a single-antenna user.?
As shown in Fig. 1, the N ports are uniformly distributed
along a linear dimension at the receiver. Each fluid antenna is
connected to an RF chain for pilot reception, and the location
of each antenna can be switched to one of the N available port
locations. Let h € CV denote the channels of N ports, and let
P denote the number of transmit pilots within a coherence-
time frame. As shown in Fig. 2, in each timeslot (subframe),
fluid antennas can switch their positions to receive pilots.
To characterize the locations of M fluid antennas in timeslot
p, we introduce the definition of switch matrix as follows:

Definition 1 (Switch Matrix and Its Constraint): Binary
indicator S, € {0,1}V*M is defined as the switch matrix

2By using orthogonal pilots at different users, the proposed scheme in this
paper can be extended to the multi-user case without difficulty.
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In Subframe p, BS reconfigures the positions of fluid antennas
according to switch matrix S,, and then receives pilot to obtain y;,

Subframe 1
Switch: S;

Subframe 2
Switch: S,

Subframe P
Switch: Sp

Y Y Y
Frame

Time

Uplink pilot transmission B Data transmission

Fig. 2. The frame structure for FAS channel reconstruction.

of multiple fluid antennas in timeslot p. The (n,m)-th entry
being 1 (or 0) means that the m-th antenna is (or not) located
at the n-th port. Constrained by the hardware structure, M of
N ports should be selected in each timeslot. To satisfy this
constraint, here we constrain that each column of S, has one
1 entry, and all 1 entries in S, are not in the same row, i.e.,

§ 1= {18, )l = LIS, (n. )] < (0,11,
Vm € [M],Vn € [N],Vp € [p]} )

Thus, we have SIS, = I, for all p € [P].
Utilizing Definition 1, the signal vector y, € CM received
at the BS in timeslot p can be modeled as

Yp = Sghxp + 2z, 2)

where x, is the pilot transmitted by the user and z, ~
CN (047, 0°1,y) is the additive white Gaussian noise (AWGN)
at M selected ports. Without loss of generality, we assume that
xp = 1 for all p € [P]. Considering the total P timeslots for
pilot transmission, we arrive at

y = Sth + z, (3)

where y = [y}, ,yg]H, S = [Sy,---,Sp], and z =
[2!

zi .. ,zg]H. Our goal is to reconstruct the N-dimensional

channel h according to the PM-dimensional noisy pilot y
(PM < N). To achieve this goal, existing works usually focus
on CS-based and/or AO-based methods, which are reviewed
in the next subsection.

B. Existing Methods for FAS Channel Estimation

1) Compressed Sensing Based Estimator: To recon-
struct the high-dimensional FAS channel h from the low-
dimensional pilot y, a well-known method is the CS. Under the
assumption of spatially-sparse channels, the CS-based channel
estimator can achieve considerable performance in MIMO
systems with hybrid structure [38]. For our considered FAS
channel estimation, by viewing switch matrix S as a virtual
analog precoder, CS-based methods can be similarly adopted.

Specifically, let a (f) denote the steering vector as a function
of incident angle #, which is defined as

a(9) = 1 [Lej%”dcosw)’...7ej27’*(N—1>dcos<9>}T’ @

VN
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Algorithm 1 FAS-OMP Reconstructor

Algorithm 2 FAS-ML Reconstructor

Input: Number of pilots P, spatial sparsity L.
Output: Reconstructed FAS channel h.
: Employ randomly generated S € S at the BS

1

2: Initialization: r =y, T =9, h =0y

3: forle{l,---,L} do

4:  Update correlation matrix: I' = ¥Hr

5:  Find new support: v* = argmax |I'(v)]

6:  Update support set: 7" =7 ¥ {v*}

7. Orthogonal projection: h (7) = ¥ (:,7)'y
8  Update residual: r =1 — ¥ (:,7) h (7))

9: end for

return Reconstructed channel h = F (:,7) h (7))

._
4

where )\ is the signal wavelength and d is the port spacing.
Assuming that the channel is spatially sparse with C clusters
each contributing R rays, the FAS channel h can be approxi-
mately modeled as

N C R
h= \/ ﬁzzgcwa(ecw)v o)

c=1r=1

where g, and 6., are the complex path gain and the incident
angle of the r-th ray in the c-th cluster, respectively. Let
F € CV*N denote the discrete Fourier transform (DFT)
matrix, thus h can be transformed into its angular-domain
representation h. Under the assumption of spatial sparsity, the
angular-domain channel h only takes L significant values in a
few of its entries (L < N). In this context, the received signal
y in (3) can be rewritten as

y = SUFh + z = ¥h + z, (6)

where ¥ = SHF is the sensing matrix. Under the principle of
uniform sampling, we can assume that the elements in S are
randomly selected from {0, 1} subject to S € S.

On can find that, (6) is a standard observation equation
for sparse signal reconstruction, which can be addressed by
the some existing CS-based algorithms. For example, in [34],
an FAS-OMP reconstructor is proposed to estimate the channel
parameters in FASs. After iteratively selecting L columns of
sensing matrix W for sparse representation, the parameters of
h including path gains and incident angles can be estimated.
By substituting the estimated channel parameters into (5), the
FAS-OMP reconstructor in [34] can be modified to acquire
channel h explicitly, as summarized in Algorithm 1.

2) Alternating Optimization Based Estimator: The CS-
based channel estimators usually operate based on a gridded
codebook, e.g., the DFT matrix F. When the real channel
parameter values fall between the grid points, the non-ideal
grid sampling may introduce estimation error [39]. To improve
the estimation accuracy, the channel parameters can be further
optimized to cope with the errors introduced by on-grid
sampling [40]. Given the spatial sparsity L, this goal can
be achieved by finding the path gains g = [g1,--- ,gL]"
and incident angles @ := [6,---,0;]" that maximize the
likelihood function P (y|g, @), i.e., the maximum likelihood
(ML) estimator. Following this idea, an AO-based method

Input: Number of pilots P, spatial sparsity L.
Output: Reconstructed FAS channel h.
Employ randomly generated S € S at the BS
Initialize g and 6 via a CS-based algorithm, e.g., OMP
Initialize step length by ( =1
while no convergence of P(y|g,8) do
Update path gain: § = BT(0)y .
Update angle: 8 = 6 — (R {%‘g:gﬂ:é}
Update step length: ¢ = (/2
end while
return Reconstructed channel h = \/g Zle Gia(0y)

R A T ol S

called FAS-ML reconstructor is summarized in Algorithm 2,
which is explained as follows.

Assume that channel h has the spatial sparsity as shown
in (5). For the considered problem of channel estimation, the
logarithm likelihood function can be written as

1
(P (ylg.0)) = ~Nln (o°7) — — [ly - B (®)g|*, (7
wherein B (0) := \/¥SH [a(61), -+ ,a(0.)]. Then, an ML-
based estimation can be achieved by solving

{g",6"} = argmin ly — B(6) gl?. ()
g,

However, due to the coupled variables g and 6, the optimal
g and O are hard to be obtained simultaneously. As a com-
promise, g and 0 are usually updated in an alternating way to
approach the sub-optimal solution [41]. By fixing one and opti-
mize the other variables, the likelihood function P (y|g, 8) can
be maximized through an AO process. Finally, the FAS-ML
reconstructor in Algorithm 2 can be obtained. After sufficient
iterations, all variable updates make P (y|g, @) monotonically
increase, thus Algorithm 2 is always convergeble.

C. Challenge and Opportunity

Challenge: Despite the feasibility of existing FAS channel
estimators, two inherent drawbacks have bottlenecked their
estimation accuracy. First, most existing estimators are para-
metric algorithms, which usually follow the assumption of
spatially sparse channels [34]. In practical scenarios, the model
mismatch may lead to unpredictable performance loss. Second,
most existing estimators are based on the randomly generated
zero-one distributed S, i.e., the switch matrix. Different from
the MIMO analog precoder whose elements are all unit-
modulus [38], only a few elements in S are one while the
others are all zero. It implies that, the received pilot y only
contains the information of a few channels associated with the
selected ports. Consequently, high pilot overhead (i.e., a large
P) may be required to accurately reconstruct channel h.

Opportunity: Different from MIMO that measures all chan-
nels simultaneously, fluid antennas switch their locations
among the ports to measure channels in a successive way,
which resembles a sampling process. Besides, unlike the
conventional MIMO whose typical antenna spacing is usually
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A/2, the port spacing of FASs d is usually smaller, such as
A/10 [5], [6], [7]. Thus, the channels of several ports closer to
each other are strongly correlated [42]. It suggests that, when
the channel of a port is sampled (measured), the uncertainty
of the channels associated with its close-by ports can be
partially eliminated. These properties inspire that, by carefully
designing a sampling sequence and conducting regression, the
FAS channels can be reconstructed in a non-parametric way.

III. PROPOSED SUCCESSIVE BAYESIAN RECONSTRUCTOR

By building experiential kernels for an objective function,
Bayesian regression can determine the sampling strategy and
reconstruct the objective functions via kernel-based regression.
Thanks to the sampler-like fluid antennas and strongly corre-
lated channels in FASs, Bayesian regression perfectly matches
the problem of FAS channel estimation.

Following this idea, in this section, we propose the
S-BAR as a high-accuracy solution to FAS channel estima-
tion [37]. Firstly, the Bayesian regression is introduced in
Subsection III-A. Then, in Subsection III-B, the proposed
S-BAR is illustrated. Finally, in Subsection III-C, the practical
implementation of S-BAR is discussed.

A. Bayesian Linear Regression

Without making any prior assumptions, the attempt to
recover the function f(x) from a limited number of sam-
ples appears to be a challenging endeavor. Modeling f(x)
as a realization of a stochastic process offers an elegant
means of specifying function properties in a non-parametric
manner. Under this framework, Bayesian linear regression,
also called Gaussian process regression (GPR) or Kriging
method [43], has become a popular solution. Specifically,
function f(x) can be modeled as a sample of Gaussian
process GP (u (x), k (x,x)), where any finite subset follows
a consistent multivariate Gaussian distribution. It is completely
specified by its mean function y (x), which can be assumed
to be zero, and its kernel function k (x,x’), which encodes
smoothness properties of recovered f(x). For clarity, here we
summarize the Bayesian linear regression in Algorithm 3, and
the detailed explanations are provided as follows.

In timeslot ¢, consider a prior GP (u(x),k (x,x’)) over
f(x). Let 4% := [y%,--- ,4%]" denote  noisy measurements
for points in A? := {x!,--- x!}, where v = f(x') + n;
with n; ~ CN (0,52). The joint probability distribution of

f(x) and ~* satisfies
() [ Ee) o
where kf(x) = [k(x',x),--- ,k‘(xt,x)]T; o=

kf(x
[ (x1) - ”u(xt)]T ; and the (4, j)-th entry of K* € C**?
is k (xi,xj), for all ¢,5 € {1,--- ,¢}. It is easy to prove that,
given ~?, the posterior over f(x) is also a Gaussian process,
with its mean and covariance being:

it (x) = (%) + (k' (30) " (K*+6%L) " (v = '), (10)
K (x, %) = & (x,¥) — (k' (%)) (K + 621,) KA (x). (1)
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Algorithm 3 Bayesian Linear Regression

Input: Definition domain S, prior GP (u (x) , k (x,x')), tol-
erance threshold e.
Output: Reconstructed function f(x).
1: Initialization: ¢t = 0, A° = &, kY (x,x') = k (x,x’)
2. while k' (x,x) > ¢ for an x € S do
3:  Timeslot update: t =¢ + 1
4. Sample selection: x' = argmax k'~!(x,x)
xES/At-1

5:  Update measured points: A" = A"~ U {x'}
6:  Measurement: 7! = f(x!) + n;
7. Posterior update: Calculate mean ;! (x) and covariance

kt (x,x’) by (10) and (11) for all x,x’ € S, respectively
8: end while
9: Reconstruction: f(x) = u! (x)
0: return Reconstructed function f(x)

Then, the next candidate point to be sampled, i.e., xttl,
can be determined based on the updated posterior. From the
information perspective, the points to be sampled should be as
uncorrelated as possible. In the case of one-by-one sampling,
sampling the point with the maximum posterior variance can
obtain the most information. Therefore, by assuming that x &
S, x!*T1 can be chosen according to

1 — argmax k' (x,x),

xeS /At

x (12)

where / is the set difference. By updating A" and ~* accord-
ingly, the variance function k! (x, x) decreases asymptotically,
which means that the uncertainty of f(x) is gradually elimi-
nated. After reaching the tolerance threshold ¢, the posterior
mean p! (x) in (10) can be viewed as the Bayesian estimator
of f(x), which completes the algorithm.

B. Working Principle of the Proposed S-BAR

In each pilot timeslot, M fluid antennas can move positions
and measure channels, thus the channel estimation of FASs
is similar to a successive sampling process. Since the port
spacing is very short, the FAS channels are strongly correlated.
These features inspire us to recover h through optimizing the
reconstructor h and the switch matrix S jointly, which can be
formulated as

min Ep, (||hff1||2), (13)

h,ses

It is obvious that (13) is a Bayesian estimation problem.
To efficiently solve this problem, one can model h as a sample
of Gaussian process GP (Oy,X). In particular, semidefinite
Hermitian matrix ¥ € CV*N is called the kernel, which
characterizes (but does not need to be) the prior covariance
of h. Given the distribution of channels and noises, the joint
probability distribution of h and y satisfies

h O > I
lreon st soms ™))

(14)
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Therefore, for given y, the posterior mean and the posterior
covariance of h can be calculated by:

pngy = SS(SUSS + 021py) y, (15)
Shly = = — IS(SUES + 0%1py)  SUE. (16)

Given a switch matrix S, it is straightforward to prove that
the optimal reconstructor his exactly the posterior mean, i.e.,
h= Mn|y» and the MSE in (13) can be rewritten as the trace of
posterior covariance, i.e., Ep ,(|[h — h||?) = Tr(Xy)y). Thus,
problem (13) can be solved by finding a proper switch matrix
S that minimizes Tr(Xyy), i.e.,

S = argmin Tr (Eh|y) . a7

Ses
Unfortunately, due to the constraint S € S and the non-convex
objective Tr(Xy,y ), problem (17) is still hard to solve.

To overcome the above challenge, we adopt the greedy-
sampling idea from Bayesian linear regression to design S.
The core technique is to greedily optimize S in a column-by-
column manner by maximizing the mutual-information incre-
ment (MII) between channels and received pilots. Specifically,
let S; := [s1,- -+ ,8¢] € {0,1}¥*? denote the first-t columns
of S where 1 < t < PM. Accordingly, the first-¢ received
signals can be written as y; = SIh + z;, wherein z; is the
first-t AWGN. Given S;, we aim to design the (¢ + 1)-th
column s;;; by maximizing the MII between received pilots
and channels from ¢ to ¢ + 1, which can be formulated as

max_ I(y;+1;h) — I(ys; h), (18)
st+1E€S
where the mutual information I(y;;h) is given by
1
I(yt, h) = 10g2 det (It + 28?2875) . (19)
g

Furthermore, we introduce the following lemma to simplify
the problem formulation:

Lemma 1 (Equivalent Problem of MII Maximization):
Given S;, the MII maximization problem in (18) can be
equivalently rewritten as

S¢41 = argmax sHEts, (20)
seS
where X; is written as
%, = ¥ - 58, (SIS, +0°1,) ' SI'E, Q1)

which is exactly the posterior covariance of h for given y;.
In particular, we have 3o = 3 and X ppy = .

Proof: Constructive proof is given in Appendix A. ]
Recalling the hardware constraint of FASs S, the zero-one
switch vector s, should only have one 1 entry, such that the
corresponding fluid antenna is positioned at one port. Thus,
one may feel that problem (20) can be optimally solved by
finding the sampling index n;11 = argmax, ¢y X¢(n,n)
and then setting s;11 = e,,, ,. However, in fact, selecting
index from the full port set [N] is not correct, because multiple
antennas cannot be located at the same port in a single
timeslot. That is to say, all 1 entries in switch matrix S,, cannot
be in the same row, as illustrated in Definition 1.
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Algorithm 4 Proposed Successive Bayesian Reconstructor

Input: Number of pilots P, kernel 3.
Output: Reconstructed FAS channel h.

1: # Stage 1 (Offline Design):

2: Initialization: t =0, X9 =X

3 forpe{l,---,P} do

4:  Initialize sampling sequence at pilot p: 2, = &

5:. forme{l,---,M} do

6: Posterior covariance update: Calculate 3; by (24)

7: Candidate selection: n;; = argmax X;(n,n)
n€[N]/Qp

8: Switch vector design: s;11 = ey, .,

9: The p-th sequence update: Q, = Q, U {n;11}

10 Counter update: t =1t +1

11:  end for

12: end for

13: Merge switch vectors: S = [s1,- -+ ,Spa]

14: Weight calculation: W = (SHXS + 02Ip,,)~1SHS

15: # Stage 2 (Online Regression):

16: Employ the designed switch matrix S at the BS, and then
obtain the received pilot: y = SPh + z

17: Channel reconstruction: h = Wiy

18: return Reconstructed FAS channel h

To address the port conflict issue while optimizing s,
2, is introduced to represent the sampling sequence, which
is composed of the indexes of the selected ports in the p-
th timeslot. €, is initialized as an empty set. Once a port is
selected, it will be added to 2, and then the next sampling
index can be selected from the difference set [N]/,. Thus,
the optimal solution to problem (20) can be obtained by

nep1 = argmax X (n,n), (22a)
n€[N]/Qp
St+1 = enHl . (22b)

In this way, constraint S can be naturally satisfied during
the design process. This ensures that the designed S is
practically implementable in FAS systems. After determining
ny+1, we can update €, by Q, U {n;41} and repeat the
above process. When the number of indexes in €, is equal
to the number of fluid antennas M, we can update 2, in (22)
by Q,41 to focus on the port selection in the (p + 1)-th
timeslot. After obtaining all PM columns of switch matrix
S :=[s1, - ,Spu], one can obtain the channel reconstructor
by

h = 2S(S"SS + 0%Tpu) 'y, (23)

which completes the algorithm.

For better understanding, the proposed S-BAR is summa-
rized in Algorithm 4, which is realized in a hybrid offline and
online manner. More details about its two-stage implementa-
tion will be discussed in the next subsection.

C. Hybrid Offline and Online Implementation of S-BAR

In this subsection, the practical implementation of the pro-
posed S-BAR is discussed. Firstly, from the derivations in the
above subsection, we obtain the following three observations.
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o Equation (23) indicates that, given S, the channel recon-
structor h is the linear weighted sum of the received
pilots y, ie., h = WHy, where the weight W :=
(SH=S + aQIpM)_lsHE only relies on the kernel 3.

o Equation (21) shows that, posterior covariance X; only
relies on kernel X, while it is unrelated to the received
pilot y in instantaneous channel estimation.

o Equation (22) suggests that the FAS port selection only
relies on the posterior covariance ;.

These observations reveal that, the switch matrix S and the
weight W for reconstructing h can be designed offline and
then deployed online for regression. Therefore, the implemen-
tation of the proposed S-BAR can be realized in the two stages
as shown in Algorithm 4, so that the complexity of employing
the S-BAR online can be significantly reduced. The details are
explained as follows.

1) Stage 1 (Offline Design): Since switch matrix is deter-
mined by the posterior covariance 3;, while 3, only relies on
the kernel 3. S € {0,1}V " and the weight W € CFM
for reconstructing h € C¥ can be designed offline at the
first stage. By updating 3; in (21) and n;y; in (22) until
t = PM, the switch matrix S can be designed in a column-by-
column way, which determines all locations of M antennas in
P pilot timeslots. To avoid the high computational complexity
of matrix inversion in (21), the following lemma is derived to
efficiently calculate 3; in a recursive way:

Lemma 2 (Recursion Formula of 3;): Given X;_1 and ng,
the posterior covariance 3; can be calculated by

i1 (17nt) i1 (nt, 1)
Et—l (Tlt,’flt) +0’2

Et == Etfl - (24)
Proof: Constructive proof is given in Appendix B. ]
Then, for given S, the optimal weight for reconstructing h can

be obtained by

W = (SUSS + 021p)) 'SP (25)

2) Stage 2 (Online Regression): Since Stage 1 is realized
offline, the switch matrix S and the weight W can be designed
and saved at the BS in advance. This mechanism of offline
design and online deployment can significantly reduce the
computational complexity of employing S-BAR. In Stage 2,
the scheme is then employed online for channel measurements.
The M fluid antennas of the BS will move and receive pilots
according to the designed S, arriving at the noisy pilot y.
According to the Bayesian estimator in (15), channel h can be
reconstructed by the weighted sum h = WHy which finally
completes the proposed S-BAR in Algorithm 4.

IV. PERFORMANCE ANALYSIS AND KERNEL SELECTION
A. Performance Analysis of S-BAR

To evaluate the performance limits of our proposed S-BAR,
in this subsection, the estimation accuracy and computational
complexity of S-BAR are analyzed, respectively.

1) Estimation Accuracy of S-BAR: To quantitatively depict
the estimation accuracy of S-BAR, we first define the MSE of
reconstructing h as E = Ey, ,(||h — hHQ). By adopting some
matrix techniques, we obtain the following lemma.
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TABLE 1
COMPUTATIONAL COMPLEXITY OF DIFFERENT SCHEMES
Scheme Computational complexity
FAS-OMP O (LPMN?)
FAS-ML O(I,PML(PM + N))
S-BAR (Stage 1) | O (PM (P*M? + NPM + N?))
S-BAR (Stage 2) O(PMN)

Lemma 3 (MSE of S-BAR for Given Kernel 3): Assume
En (hh™) = 3,.. Given a kernel ¥ and a switch matrix S
as the inputs of S-BAR, the MSE of reconstructing h can be
derived as:

E =T (TI" (S"S0vS + 02Ipy ) IT)

— 2R (Tr (IT"S"Beor)) + Tt (Beov),  (26)

where II is a matrix function w.r.t 3, given by
I = (S"SS + 0%Ipy) P 27)
Proof: Constructive proof is given in Appendix C. [ ]

Lemma 3 characterizes the estimation accuracy of S-BAR
for a given kernel 3. Particularly, it allows us to evaluate the
estimation error of S-BAR when the selected kernel X and the
real covariance X.,, are mismatched. Besides, we find that
E is independent of the real mean of channels, i.e., E,(h),
which means modeling h as a zero-mean process does not
loss the generality. Then, as the fundamental limit, one may
be concerned with the achievable minimum MSE of S-BAR,
thus we introduce the following corollary.

Lemma 4 (Achievable Minimum MSE of S-BAR): Assume
E (hh') = ., where 2, is rank-K. The achievable
minimum MSE of reconstructing h via S-BAR, i.e.

Enin = IEI:llél Eh’z(||f1—hH2), only depends on the

eigenvalues of .., and the noise power o2, which can be
written as:

K Apo2
Emln = i ’ 28
Z A + 02 (28)
k=1
where {\1, -+, Ak} are the K positive eigenvalues of 3¢y .

The equality holds if and only if the kernel is exactly the real
covariance of h, i.e., X = X, and the FAS channels are
completely observed, i.e., PM = N.

Proof: Constructive proof is given in Appendix D. [ ]

Lemma 4 characterizes the lower bound of MSE while
employing S-BAR for FAS channel estimation. Note that,
when the dimension of S is N x N, the reconstructor
degenerates into a well-informed estimator. Furthermore, if the
kernel 3 is chosen to equal the real channel covariance
Ycov, the MSE of the Bayesian reconstructor will coincide
with the well-known posterior covariance formula in linear
estimation theory [44]. From the perspective of statistical
signal processing, Lemma 4 reveals the equivalence between
a perfect kernel-based Bayesian reconstructor and a LMMSE
estimator.
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2) Computational Complexity of S-BAR: The entire proce-
dures of the existing FAS-OMP reconstructor in Algorithm 1
[34] and FAS-ML reconstructor in Algorithm 2 should be
employed online. Different from these schemes, the proposed
S-BAR incorporates a hybrid offline and online implemen-
tation process. Specifically, the signal processing of S-BAR
scheme is composed of two stages, the offline design at Stage
1 and the online regression at Stage 2. At Stage 1, the computa-
tional complexity is dominated by the calculation of posterior
covariance 3; and weight W. According to (24) and (25), the
complexity of Stage 1is O (P2M? (P2M? + NPM + N?)).
At Stage 2, the computational complexity is from the weighted
sum of received pilot y, i.e., h = WHy. Thus, the compu-
tational complexity of Stage 2 is O (PMN). For compari-
son, here we summarize their computational complexities in
Table I, wherein I, denotes the number of iterations required
by FAS-ML reconstructor.

Note that, although the complexity of Stage I is high, Stage
1 can be implemented offline in advance. Then, the calculated
switch matrix S and weight W can be saved at the BS for the
subsequent online regression in Stage 2. Therefore, in practical
applications, the effective complexity of employing S-BAR is
only linear to the number of ports /N. Besides, we point out
that the designs of S and W do not depend on the specific
user, which suggests that the proposed S-BAR scheme can
be extended to multi-user case without difficulty. In addition,
h = WHy in Stage 2 can be calculated in a parallel way,
which means that the time complexity of S-BAR is dimension-
independent. These encouraging features further enhance the
expansibility and the practicality of our proposed S-BAR.

B. Kernel Selection of S-BAR

Selecting a proper kernel 3 for S-BAR is essential in
building an effective regression model. 3 determines the shape
and flexibility of the proposed S-BAR, which in turn affects its
ability to capture patterns and make accurate reconstruction.
Considering the localized correlation property of FAS chan-
nels, an ideal kernel should assign higher similarity to nearby
ports and decrease influence rapidly with distance. Since the
channel covariance does not change so frequently as channels,
a well-designed kernel 3 can work for a long time.

1) Covariance Kernel: Since the mathematical significance
of kernel is the prior covariance, an ideal approach is to use
the real covariance of h as the kernel for reconstruction, i.e.,
Ycov = E(hh'). Before employing S-BAR, we can train
an approximated 3., based on the CSI knowledge in some
existing channel datasets, which can be obtained by

R
Seon % 1 D by, 29)
r=1
where h, is the r-th channel for training kernels and R is the
number of training timeslots.

2) Experiential Kernel: In some scenarios where the
explicit CSI is difficult to acquire, training an experiential ker-
nel based on received pilots is more practical. Let x,, denote
the position of the n-th port. After balancing the complexity
and practicality, two experiential kernels are recommended:

1999

« Exponential Kernel: The exponential kernel X, also
known as the Laplacian kernel, is the most popular choice
in Bayesian regression, which is given by

Sep(n, 1) = exp(—n|x, — xu]|?) (30)

for all n,n' € {1,---, N}, where n > 0 is an adjustable
hyperparameter. The exponential kernel is not sensitive to
outliers, thus it is suitable to reconstruct channels without
obvious regularity.

o Bessel Kernel: The Bessel kernel 3, is well-suited to
model complex-valued data with oscillatory or periodic
patterns. The kernel is given by

Ebes(nvn/) =Jo (UHXn - Xn/”) (3D

for all n,n’ € {1,---,N}, Jy is the zero-order Bessel
function of the first kind. ¥y has the flexibility to
adapt to data that exhibits repeating fluctuations, thus it is
suitable to reconstruct the channels with periodic patterns.
The hyperparameter 7 is the key factor that influences the
performance of experiential kernels. We propose to determine
the value of n via an ML-based method, so that the selected
experiential kernels can well approximate the real channel
covariance. Specifically, we assume that R channel realizations
are utilized to train an experiential kernel 3 before employing
S-BAR. By viewing ¥ as a function of hyperparameter 7, the
ML estimator of 7 can be written as

R
> n(P(y.n), (32

r=1

{E*a 77*} =

argmax
Ze{Zexp, Zbes}, >0

wherein the likelihood function is given by

—1
exp (—yf (S?EST + O'QIPM) yr)
mPM det (S?EST + O'QIPJW)

and X can be selected as Moy, of Xpes; Yr := S;h, + 2, €
CPM  denotes the received pilot associated with the r-th
training channel h,; and S, is randomly selected from S.
Since n is a positive scalar and 3 only has two candidates,
a one-dimensional search can be adopted to obtain the optimal
solution to problem (32).

P(yrln) = (33)

V. SIMULATION RESULTS

In this section, simulation results are carried out to ver-
ify the effectiveness of the proposed S-BAR. Firstly, the
simulation setup and benchmark schemes are specified in
Subsection V-A. Then, the estimation behavior of S-BAR is
analyzed in Subsection V-B. Next, The impact of noise on
the estimation accuracy is shown in Subsection V-C, and the
influence of pilot overhead on the estimation accuracy is
studied in Subsection V-D. Finally, the impact of electromag-
netic (EM) coupling on estimation accuracy is investigated in
Subsection V-E.

A. Simulation Setup and Benchmarks

Since we have assumed the normalized transmit power, the
receiver signal-to-noise ratio (SNR) is defined as SNR =

2 A
EIm ), of which the default value is set to 20 dB. Let h

o2
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Fig. 3. An illustration of employing S-BAR scheme to estimate FAS channel h. (a)-(d) illustrate the real part of h versus the index of ports. (e)-(h) illustrate

the imaginary part of h versus the index of ports.

TABLE II
SIMULATION PARAMETERS OF FAS CHANNELS
Parameter QuaDRiGa [45] SSC in (5)
Carrier frequency f. 3.5 GHz 3.5 GHz
Number of clusters 23 9
Number of rays 20 100
Path gains [46, Table 7.7.1-2] CN(0,1)
Incident angles [46, Table 7.7.1-2] | U (—=,+)
Max. Angle spread 5° 5°
Path delays [46, Table 7.7.1-2] \
Max. Doppler shift 10 Hz \

denote the estimated value of channel h. The performance
is evaluated by the normalized mean square error (NMSE),

which is defined as NMSE = E,, (pl).

1) Simulation Setup: Otherwise particularly specified, the
number of FAS ports is set to N = 256 and that of fluid
antennas is set to M = 4. The length of the fluid antenna
array is set to W = 10, thus the port spacing should be
d= % The number of pilots is set to P = 10. To account
for both the model-mismatched case and model-matched case
for the existing parametric estimators, the simulations are
provided based on both the QuaDRiGa channel model in [45]
and the spatially-sparse clustered (SSC) channel model in (5).
The channel parameters in 3GPP TR 38.901 [46] is used to
generate the QuaDRiGa channels, and the main values are
set as shown in Table II. For the kernel settings, we set the
number of training timeslots as R = 100 to train kernels.

The hyperparameter 7 is obtained via (32) to generate the
exponential kernel X, and the Bessel kernel Xy,.

2) Simulation Schemes: We consider the following four
FAS channel estimators for simulations:

o« FAS-OMP: Set the spatial sparsity L as the twice of
the number of clusters C. Then, Algorithm 1, i.e., the
modified FAS-OMP reconstructor in [34], is employed to
reconstruct h.

FAS-ML: Set the spatial sparsity as L = 2C. Then,
the FAS-ML reconstructor in Algorithm 2 is employed
to estimate channel h. In particular, the path gains and
incident angles of h are initialized via OMP.
SeLMMSE: The SeLMMSE scheme proposed in [33]
is adopted to estimate channel h. It can be achieved by
measuring channels of PM equally-spaced ports and then
using zero-order interpolation to reconstruct h.
Proposed S-BAR (3): Given a kernel 3, Algorithm 4,
i.e., the proposed S-BAR, is employed to estimate h.

B. Estimation Behavior of the Proposed S-BAR

To better understand the working principle of the pro-
posed S-BAR for channel estimation, we plot Fig. 3 to intu-
itively show its behavior for different system parameters. The
QuaDRiGa channel model is considered to generate channel
h. The ideal covariance kernel X, is used as the input of
S-BAR. Fig. 3 (a)-(d) show the real part of h as a function
of the port index, and Fig. 3 (e)-(g) show the imaginary part
of h as a function of the port index. Particularly, the curve
“Truth” denotes the real channel h, and the circle marks denote
the sampled (measured) channels, which are selected by the
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Fig. 4. The NMSE as a function of the receiver SNR under the assumption
of QuaDRiGa channel model.

switch matrix S designed via S-BAR. The black dotted line
“Mean” denotes the posterior mean of Bayesian regression
By i.e., the estimated channel h. The highlighted shadows
in the figures represent the confidence interval of h, defined as
[n]y (1) =3By (1, 1), )y (n) + 3y (n,n)] for the n-th
port channel.

From this figure, we have the following observations.
Firstly, as P and M increase, the confidence interval, i.e., the
vertical height of shadows, is gradually reduced. It indicates
that, more pilots or antennas allow more sampling points
for channel reconstruction, which can better eliminate the
uncertainty of FAS channels. When the posterior variance
3hjy(n,n) becomes sufficiently small, the posterior mean 110
can well approximate h. Secondly, Fig. 3 (c) and Fig. 3 (g)
show that, nine samples are enough for the posterior mean pq
to well approximate a 256-dimensional h. This result suggests
that, benefiting from the prior knowledge of strongly correlated
channels, very few pilots and fluid antennas are sufficient to
accurately reconstruct channels. Thirdly, one can note that the
samples in Fig. 3 (d) and Fig. 3 (h) are close. The reason is
that, the inflection regions of a function are more informative
than its flat regions, which indicates that the inflection parts
require more dense samples to realize well regression. That’s
why the shadow heights in inflection regions are larger than
those in flat regions, as shown in Fig. 3 (c) and Fig. 3 (g).
Although some ports in inflection regions have been selected
as samples, they are still hard to sufficiently eliminate the
channel uncertainty of these regions. Thereby, in Fig. 3 (d)
and Fig. 3 (h), some samples in inflection regions are selected
to further eliminate the channel uncertainty of these regions.

C. NMSE Versus the Receiver SNR

We plot the NMSE as a function of the SNR in
Fig. 4 and Fig. 5, which follow the assumptions of QuaDRiGa
model and SSC model in (5), respectively. Note that, the
FAS-OMP and FAS-ML reconstructors have assumed the SSC
model in (5). Due to the lack of obvious regularity for
QuaDRiGa channels, the exponential kernel 3., is selected
as the input of S-BAR in the QuaDRiGa case. Due to the
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Fig. 5. The NMSE as a function of the receiver SNR under the assumption

of SSC channel model.

periodic patterns of SSC channels in the spatial domain, the
Bessel kernel X5 is selected as the input of S-BAR in
the SSC case [6], [7]. To show the performance of S-BAR
in the ideal case, the pre-trained covariance kernel X, is
considered in both cases. From these two figures, we have the
following observations.

Firstly, as the receiver SNR rises, the NMSEs of all esti-
mators decrease rapidly. Particularly, one can find that the
proposed S-BAR achieves the highest estimation accuracy for
both SSC channels and QuaDRiGa channels. The reason is
that, the existing methods do not utilize the prior knowledge
of FAS channels for estimation. For FAS-OMP and FAS-
ML reconstructors, the measured ports are randomly selected,
which means that the information provided by the measured
channels may not capture all patterns of h. For SeLMMSE,
although channel correlation is partially exploited, the unmea-
sured channels are obtained by zero-order interpolation. From
the statistical perspective, the potential estimation errors of
the unmeasured channels are not considered by SeLMMSE.
In contrast, the proposed S-BAR has incorporated the effect
of prior information into its estimator, which can reduce
the potential estimation errors of all channels simultaneously.
Besides, S-BAR does not assume a specific channel model,
which implies that it is not influenced by the model mismatch
as the FAS-OMP and FAS-ML reconstructors.

Secondly, we observe that the S-BAR enabled by the expo-
nential kernel 3¢, and Bessel kernel X,.5 can achieve similar
performance as the covariance kernel 3., . In particular, the
curves of the two S-BAR schemes are almost coincident in the
SSC channel case. Recall that 3¢y, and 3, are generated
by experiential parameters, while X, is trained from real
channel data. This observation indicates that, even if the real
channel covariance ¥, is totally unknown, the experiential
kernel Y.y, and 3y can still enable S-BAR to achieve
considerable performance. In other words, to estimate channels
accurately, the proposed S-BAR only needs the “virtual” prior
knowledge provided by carefully selected experiential kernels,
while the “real” channel covariance is actually not necessary.
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D. NMSE Versus the Number of Pilots

We plot the NMSE as a function of the number of pilots
P in Fig. 6 and Fig. 7, which follow the assumptions of
QuaDRiGa model and SSC model, respectively. In addition,
to show the influence of non-preferred kernels on S-BAR in the
two channel cases, we have also added the baseline that X},
is selected as the input of S-BAR in Fig. 6 and the baseline
that X, is selected as the input of S-BAR in Fig. 7. These
new baselines are expressed as dotted red lines in the figures.

We observe from these two figures that, to achieve the same
estimation accuracy, the proposed S-BAR scheme consumes a
much lower pilot overhead than the benchmark schemes. For
example, to achieve an NMSE of —15 dB in the SSC channel
case, the numbers of pilots required by FAS-OMP, FAS-ML,
SeLMMSE, and the proposed S-BAR with the preferred kernel
input are P = 20, 13, 20, and 5, respectively. We can conclude
that, compared to the state-of-art schemes, the proposed S-
BAR scheme can reduce the pilot overhead of about 50%.
Particularly, in Fig. 6, one can find that the curve “Proposed
S-BAR (X.oy)” begins from NMSE = —10 dB when P = 1.
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It implies that, aided by kernel X, the acquired information
of four observations (P x M = 4) is already sufficient for S-
BAR to accurately recover the channels of most ports.

Besides, we also find that, even if the kernel input is not
preferred, the proposed S-BAR can still achieve satisfactory
performance. For example, when 3,5 is selected as the input
of S-BAR in the QuaDRiGa channel case, the NMSE for
S-BAR can achieve -21 dB when P = 10, which is 6 dB
lower than that for the best-performed SeELMMSE. In the SSC
channel case, when X, is selected as the input of S-BAR,
its NMSE can achieve -20 dB, which is about 10 dB lower
than the NMSE for the best-performed FAS-ML. These results
have further verified the effectiveness of our proposed S-BAR.

Finally, in the SSC channel case, the NMSE for S-BAR
decreases quickly when P < 6, while it decreases slowly when
P > 6. The reason is that, when P < 6, the proposed S-BAR
has not captured all spatial features of SSC channels, thus the
estimation error is mainly caused by the incomplete regression.
When P > 6, with sufficient channel sampling, the channel
information captured by S-BAR can well describe the periodic
feature of SSC channels. In this case, the estimation error is
mainly caused by the measurement noise. On the other hand,
in the QuaDRiGa channel case, this interesting phenomenon is
not observed. The reason is that, unlike the SSC channels, the
spatial periodicity is not obvious for the QuaDRiGa channels,
which makes it difficult for S-BAR to fully capture all patterns
of channels via a few samples. It explains why 3¢ is not
the preferred kernel for the QuaDRiGa channel case.

E. Impact of EM Coupling on Estimation Accuracy

For some FASs whose multiple antennas can move physi-
cally, the effect of EM coupling among fluid antennas can be
avoided by forcing that the antenna spacing is always larger
than A/2 [31], [32]. In contrast, a few FASs are realized
by pixel-like switch networks [23]. For such FAS structures,
the EM coupling among ports cannot be ignored, thus only
the coupled channels can be estimated. To take this effect
into account, we introduce the EM coupling model in [47].
To be specific, coupling matrix Cep € CV*V is used to
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modify the FAS channel h, which can be obtained by field
tests or full-wave simulations. As a typical example, here we
consider dipole antennas with A/2 length, A/100 width, and
d = % spacing. With these parameters, the desired Cgy,
can be directly generated by the Matlab Antenna Toolbox.
In this context, the equivalent channel can be modeled as
h = Cér/,? h, and the equivalent kernel can be derived as
Cér/fE(Cér/nz)H. To show the effectiveness of S-BAR against
the EM coupling effect, three schemes are compared:

o No suppression: Under the influence of EM coupling,
the proposed S-BAR ignores coupling and estimates the
equivalent channel h based on the original kernel X, .

o Suppressing coupling: Under the influence of EM cou-
pling, the proposed S-BAR is employed to estimate h
base on the modified kernel CéI/HQECOV(C}X/,? ),

o Without coupling: Assume that the inter-port EM cou-
pling can be fully eliminated by hardware isolation, i.e.,
Cem = In. The proposed S-BAR is employed to estimate
ideal h based on the ideal kernel X, .

Since the EM coupling depends on the port spacing d, we fix
M and then plot the NMSE versus the normalized array length
W/ X in Fig. 8, where the QuaDRiGa channels are considered.
We observe that, despite the EM coupling among ports, the
proposed S-BAR can still achieve considerable estimation
performances, and the NMSE is still lower than —15 dB.
It is interesting to find that, as the port spacing increases, the
NMSE for the scheme “No suppression” decreases first and
then rises. The reason is that, the estimation performance of
S-BAR is influenced by the two factors, i.e., spatial correlation
and EM coupling. When W < 30), the main factor that
limits the estimation performance of “No suppression” scheme
is EM coupling. As the port spacing increases, the effect
of EM coupling is reduced, leading to its higher estimation
accuracy. When W > 30\, the main factor becomes the
spatial correlation. As the port spacing increases, the spatial
correlation among ports becomes weaker. Since the accuracy
improvement of S-BAR is realized by utilizing the strong
correlation among ports, its performance gains become less
accordingly. In contrast, the effect of EM coupling has been
eliminated by “Suppressing coupling” through considering the
equivalent kernel Cér/nzZCOV(Cér/f ), and C,y, is not taken
into account by “Without coupling” case. Thus, the accuracy of
these two estimators mainly depends on the spatial correlation.
As the port spacing increases, the weaker spatial correlation
becomes the bottleneck limiting their performance, which
leads to their continuously rising NMSEs.

VI. CONCLUSION

In this paper, we have proposed S-BAR as a general solution
to estimate channels in FASs. Specifically, this paper is the first
attempt to introduce Bayesian inference into the FAS channel
estimation. Different from the existing FAS channel estimators
relying on channel assumptions, the general S-BAR utilizes the
experiential kernel to estimate channels in a non-parametric
way. Inspired by the Bayesian regression, the proposed S-
BAR can select a few informative channels for measurement
and combine them with the experiential kernel to reconstruct

2003

high-dimensional FAS channels. Simulation results reveal that,
in both model-mismatched and model-matched cases, the
proposed S-BAR can achieve higher estimation accuracy than
the existing schemes relying on channel assumptions.

For the follow-up works, the extension to wideband channel
estimation for FASs will be interesting. Since the channels
of multiple carriers share the same ports, the port selection
should balance the uncertainty of the channels on different
subcarriers. Besides, thanks to the generality of Bayesian
regression, the proposed S-BAR can be extended to realize
channel estimation in the general phased-array case [48].
In addition, since reconfigurable intelligent surfaces (RISs) can
provide additional control degrees of freedom (DoFs) for FAS
channels [49], the cooperation between RISs and FASs may
be able to improve the accuracy of CSI acquisitions [50].

APPENDIX A
PROOF OF Lemma 1

Using some matrix partition operations, the mutual infor-
mation I(y;y1;h) can be rewritten as

I(yi+1;h)
1
= log, det (Im + 0.28115_1+lzst+1>

It + %SHESt iSHESt 1
= log, det gi¢ ot T
82 < L sf+1ESt 1+ #Sﬁlzs,;k]

o2
(a) I+ %SPESt %S?ZSHl
= 1 o L o

og, det ( 1 LM Sise
(b)

let
1
= I(yt, h) + 10g2 (1 + 0-25?+12tst+1) N (34)

where (a) holds according to the matrix triangularization:

1 QH
?St EStJrl :|

L + 5Siss,
1+ %S?+1Etst+1

let

. It Ot

T s, =S (sS4 0%L) T 1

It + %S?ZSt %StHESH_l
L SEHZSt 1+ %sg_lxs“l ’

o2

(35)

and (b) holds according to the definition in (19). Clearly, max-
imizing I(ye1;h) — 1(ye;h) = logy (1 + Josih Bisiya) is
equivalent to finding a proper s that maximizes s"' X;s, which
completes the proof.

APPENDIX B
PROOF OF Lemma 2

To obtain the recursion formula of ¥, the key step is to
use block-matrix inversion formula in (36), shown at the top of
the next page, to process the term (S{'XS; + 02It)_1 in (21).
Letting E; = SIXS; + o2I;, we have

—_
=t—1

[1]

¢ S?ESt_l

S%{flEst :|

A B
o2 +si¥s,

. D]. (37)

Substituting the corresponding A, B, C, and D in (37)
into (36), the inverse of =; can be represented by the
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—A-'B(D - CA~!B)"!

(D - CA-'B)~! (36)

combination of Et__ll, S;_1, and s;, written as

=—1 gqH H =—1 =—1 gqH
B, 1S 1Zses, XSy 1B, —E, 1S, st
o2+si3, s, o2+sH3, s,
H =—1
—sy B8 18, 1
U2+stHEt_1st 02+s{{2t_1st

(38)

=—1

—1_ | =t-1
;=

—
—
o

Then, by taking Et_l and S; = [S;—1 s:] back into the
posterior covariance 3; in (21), we have
3, =% - %S,E; 'S’y
1
02 +sH%, s
x (= (E-Z)ss(B-20)

=3 ESt_1Et__1S?—1E +

(S - %,_1) sS4 S sl (z—zt_1)+2sts?2)

Etflstsfztfl

o2 +sH%, s

hITEE} (5, nt) i (nt, 5)
Etfl (nt, nt) + 0'2

where (a) holds since s7X; s, = ;1 (ng,n;) and Xs; =
31 (:,n¢). This completes the proof.

=3 -

W -

. (39)

APPENDIX C
PROOF OF Lemma 3

When t = PM, according to the definition of h in (23),
the square error of employing S-BAR can be rewritten as

a

-

((8"=)"(s"58 + ®Lpy) 'S" ~ Iy ) b
+(s"x) " (sMms + 0—2IPM)’IZH2
(40)

where (a) holds according to (3); (b) holds according to (27).
Next, recalling the properties z ~ CN (OPM,J2IPM) and
E (hh'!) = 3, the MSE can be derived as

B =E (o — )
© <(HHSH — IN) Yicov (HHSH - IN)H>

+02Tr (M) = Tr (I (S"S oS + 021py) I0)
— 2R (Tr (TI"S" 2oy ) ) + Tr (Beov) (41

Y| (mHs? — 1y) b+ )

where (c) holds since ||x[|* = Tr (xx™) for any vector x.

This completes the proof.

APPENDIX D
PROOF OF Lemma 4

Observing (26), one can find that the MSE FE is a quadratic
form w.r.t matrix II. Thus, the minimum MSE can be achieved
by finding an 3 such that g—ﬁ = Opprxn holds. According

to (26), the partial derivative of E' with respect to Il can be
derived as

OF

oIl
By letting g—ﬁ = Opprx v and substituting (27) into (42), the
original proof can be reduced to prove that

= (S"SenS + 0’Tpy) T — (B S)". (42)

(S"SS + 0%Tpy) SHE
= (SHECOVS + UzIPM)

Since the proposed S-BAR does not depend on the value of
noise power, (43) should hold for arbitrary o2. By considering
the special case when o2 — oo, (43) is equivalent to

SH (2 — Zeov) = 0prrxn

sy 43)

(44)

Furthermore, since our derivation also does not impose the
specific form of S, ¥ = 3., is necessary to make the
equation always hold. By substituting 3 = 3., into (26),
the MSE E can be rewritten as

E=Tr (Ecov) —Tr (2:covS (SHECOVS+O—2IP]\4) _1SHECOV)

= Tr (Znyy) |2:2C0V 45)

which is exactly the trace of the posterior covariance Xy
in (16) when ¥ = 3X,,. In Bayesian linear regression, the
posterior variance of sample path, i.e., each diagonal entry
of Xy,)y, monotonically decreases as the number of samples
increases [43]. Therefore, the MSE E achieves its minimum
when all port channels are fully observed (although it may
be impractical), i.e., PM = N. By substituting PM = N
into (45), we have

Tr (Seor (Beov + 02Ix) Sy
(< ) Seor)

e (35} +0721) 7

cov

K K
ZL 1 Zx\k+027

IIlln 7Tr ( COV

S
N

=

(46)

k=1 Ak T3z
where (a) holds by using the well-known Sherman-
Morrison-Woodbury ~ formula (A +BCD)~! =
A! A-'B(I+CDA"'B) 'CDA™' and (b)
holds according to the eigenvalue decomposition
Sov = Udiag(\i, -+, \g)UM wherein U € CN*K

is an orthogonal matrix. This completes the proof.
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